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A cylinder rotating about its vertical axis is filled with homogeneous liquid and 
subjected to oscillatory mechanical forcing. Depending on the ratio, T ,  of the forcing 
period to the spin-down time, the flow adjacent to the sidewall resembles either a classic 
Stokes layer (small T) ,  or a modulated Stewartson layer (large 7). Laboratory 
experiments show that the flow becomes unstable to columnar disturbances that are 
aligned with the axis of rotation. This azimuthally wavy instability can lead to the 
formation of strong vertical vortices which penetrate into the interior. Quasi- 
geostrophic depth-invariant linear instability theory is compared with the experiments. 
The theory is much too stable and grossly overestimates the experimental critical 
points. An inertial adjustment model, which in a crude way takes account of observed 
small-scale (ageostrophic) instability and turbulence in the near-wall region, is in much 
better agreement with the laboratory measurements of the onset of the columnar 
vortices. Thus, the origin of the vertically coherent structures appears to be crucially 
related to alterations of the laminar Stokes-Stewartson profiles by fine structure in the 
boundary layer. 

1. Introduction 
Laboratory models have often been employed to study the fundamental dynamics of 

wind-forced ocean gyres. Early experiments (e.g. Beardsley 1969) focused on a sliced 
cylinder, with steady forcing induced by the differential rotation of a contact lid. When 
the basic rotation is rapid, the Taylor-Proudman theorem applies and the motions are 
independent of depth. A uniform bottom slope causes vertical vortex stretching in a 
manner that simulates the oceanic p-effect. Beardsley (1975) and Krishnamurti (1981), 
among others, have also conducted experiments illustrating some aspects of time- 
periodic forcing of such laboratory gyres. In a study aimed at providing data relevant 
to eddy generation in coastal regions with fluctuating alongshore wind stresses, Pratte 
& Hart (1 99 1) carried out laboratory experiments on periodically forced flow over non- 
axisymmetric topography on a polar /3-plane. They showed that a barotropic 
(homogeneous fluid) gyre becomes chaotic after spatially and temporally localized 
small-scale eddies are generated by instability in the sidewall boundary layer. This 
particular instability is difficult to analyse because there is no closed-form axisymmetric 
basic state about which to linearize, and this fact led us to look at a related system with 
a flat bottom that does have a simple azimuthally invariant time-periodic basic solution 
u(r, t). The stability of this ‘Stokes-Stewartson flow’ is of fundamental interest, as it is 
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FIGURE 1 .  Sketch of the experimental apparatus. A right cylinder is rotated about its axis at rate S(f), 
while the top disc that is immersed in the fluid rotates differentially at rate w(t) .  The fluid is of uniform 
density and viscosity. All bounding surfaces are rigid. 

a generalization to rotating finite-depth fluids of the classic oscillatory Stokes layer 
stability problem, and provides, as discussed below, an interesting interaction between 
large-scale flow instability and small-scale turbulence. 

We consider motion in an enclosed rotating cylinder subject to weak oscillations in 
the basic rotation rate Q about the time-mean a,. Additional driving is provided by 
differential rotation of a contact lid. This contains a relatively small steady component 
o + O,, plus, potentially, a modest time-periodic oscillation. The situation is shown in 
figure 1. A homogeneous liquid with viscosity v is contained in a tank of height H and 
radius L. The basic rotation is given by 

(1) 

(2) 

$2 = Of = O,( 1 - 6, sin (yt))  2, 

w ( t )  = O + 6, sz, cos (Yt),  

while the differential lid rotation rate is taken to be 

where is the modulation frequency, is the mean forcing, and the S are the non- 
dimensional amplitudes of the basic and differential rotation modulations. We use 
coordinates attached to the cylinder bottom and sidewall. The Navier-Stokes equations 
in this frame of reference are (e.g. Hart 1990) 

av -+v .Vv+29( t )z"x  v =  - 
at 

d$2 .Vp+vV2v+rx- ,  
dt 

v * v  = 0,  (3  6) 

where p is the dynamic pressure divided by the uniform density p, z is the vertical (or 
axial) coordinate, and r is the position vector. 

We define a mean flow Rossby number, 

R, = O/2O,, (4 a)  

R, = 6,/2, (4 b) 

Y m  = Y/2Qo, (4 c) 

a Rossby number for sloshing caused by the oscillation of the basic rotation, 

and a Rossby number relating the modulation frequency to the mean rotation, 
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When all these numbers are small the flow is geostrophic and depth-invariant to lowest 
order. The vertical vorticity equation obtained from ( 3  a) may then be integrated from 
the bottom to the top, where Ekman suction velocities w b  and w, associated with thin 
horizontal boundary layers on the horizontal discs are applied. We obtain 

av2 Y 2 0  
_____ + J( Y, V2 !?) = 0 (1 - 6, sin (y t ) )  (w, - wb) + vV4 Y + 26, Q0 y cos (y t ) ,  at H ( 5 )  

where Y ( r ,  8, t )  is the geostrophic streamfunction for the horizontal depth-invariant 
flow, and J is the Jacobian advection operator. 

The standard Ekman compatibility relations just outside the Ekman layers give 

and 

Introducing scales y-l for time, y L  for velocity, and L for horizontal length leads to 
the non-dimensional form of the quasi-geostrophic vorticity equation 

. (7) +J(Y,V2y? = -Q(l-6,sin(t)) (6, + PQS,) cos (0  
Y m  

av2 Y 
at 

Because 6, is small we may neglect the modulation of the stretching term on the right 
of (7). This leaves four governing parameter groups. These include 

Q = 2 ( ~ 0 , ) ~ ’ ~ / y H ,  E u/yL2, W/y ,  (8) 

which are, respectively, the ratio of the spin-down rate to the driving frequency, the 
lateral Ekman number based on driving frequency (which may be interpreted as a ratio 
of forcing period to the time it takes a viscous signal to traverse the cylinder), and the 
non-dimensional mean flow forcing amplitude. The last term in (7) shows the 
equivalence of periodic lid forcing and modulation of the basic rotation rate of the tank 
in generating oscillatory flows in the container. Only the second mode of oscillatory 
driving was used in our laboratory experiments, which have 6, = 0. However, in what 
follows it is useful to define a general forcing function 

6 = 6, +$Q8,, (9) 
whence the final parameter group becomes Sly ,  and the approximate quasi- 
geostrophic vorticity equation may be written 

6 
YVl 

+J(Y,V2!?) = - Q  +EV4Y+-c0s(t). 
av2y 

at 

In this paper we concentrate on a limited, but typical, range of laboratory 
parameters in which E is very small, Q is somewhat less than one, and Sly ,  and W / Y  
are varied. In the experiments we fix all but 6 = 8, and W ,  and with the other laboratory 
variables as given in $2 below, all of the parameter groups in (10) can be reconstructed 
if need be. 

The reader may note that the derivation of (10) hinges on depth independence of the 
dominant parts of the flow. This z-invariance may not hold in a thin ‘Ell3’ layer 
(actually of thickness E1/3L213ym2/3H--213 using our notation) next to the sidewall. This 
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latter parameter is of order lop2 in the experiments reported here, so that the 
contributions from such a region if the flow is in the Stewartson regime (Q > 1 for 
oscillatory motions or ~ / y  + 0) takes up only about 10% of the sidewall boundary 
layer domain. When Q is small, the periodic component of the sidewall flow is 
dominated by oscillatory Stokes flow, and the ‘ Ell3’ layer is insignificant. 

Equation (10) has an exact solution, because for axisymmetric flow in a cylinder the 
Jacobian operator vanishes and the resulting forced linear problem is easily solved. The 
periodic azimuthal flow that will be established some time after turning on the 
oscillatory driving is described by 

+ rsin(t)+rQcos(t)-Re 

where the parameters 
‘1 = (E/Q)l”, h = (E/(Q+i))”2 

are the Stewartson layer and Stokes-Stewartson layer ‘thicknesses ’ respectively. Z, is 
a modified Bessel function. A more convenient asymptotic form is obtained when 7 and 
Ihl are small. This is 

- 
w 

u(r, t) z - ( r  - e(‘p1)17’ 
’ 

{ r  sin (t) + Qr cos ( t )  
2Y )+2y,(l +Q2) 

- ea””(r-l) [sin(t+bl”(r- 1))+Qcos(t+b1’2(r- l))]}, (13) 
where 

(1 + Qz)112 + Q ,  b = (1 + Qz)1’2 - Q 
2E 2E 

U =  

Thus, there is a steady bias associated with a Stewartson (1957) layer near r = 1 (the 
first term on the right of (1 3)). The oscillatory forcing excites a periodically sloshing 
solid rotation in the interior of the fluid, accompanied by a mixed Stokes-Stewartson 
boundary layer adjacent to the rigid sidewall in order to bring the tangential flow to 
zero there. As Q + 0, this latter boundary current reduces to the classic Stokes layer 
(Stokes 1851), if viewed from a coordinate system rotating at the mean rate 0,. When 
Q is large the solution corresponds to a temporally modulated Stewartson Ell4 layer. 

Previous two-dimensional calculations by von Kerczek & Davis (1 974) have 
indicated that the pure Stokes layer may be linearly stable as L+ co. One original goal 
of our research was to conduct laboratory experiments with varying Q to see if any 
instabilities found near Q z 1 might disappear as Q is made small. We thought the 
problem could also be addressed by solving the linear stability problem for the 
columnar (depth-independent) modes of instability, which is obtained from (10) while 
using (1 1) as a basic state. To our surprise this linear stability problem is largely 
irrelevant to what is seen experimentally, because instability is observed for a much 
lower forcing amplitude than that for which the linear theory has unstable solutions. 
Similar comparisons have been made for the non-rotating Stokes problem (von 
Kerczek & Davis 1974; Davis 1976). They suggest that the laboratory flows become 
prematurely unstable due to finite-amplitude perturbations and nonlinear instability. 
In our rotating-fluid case, the observations of low-S/y, columnar eddy generation can 
be adequately explained by an adjusted linear stability theory that takes into account 
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the effects of small vertical-scale (non-columnar) near-wall turbulence that significantly 
changes the vertically invariant zonal flow upon which the columnar instabilities grow. 

2. Experimental results 
The experiments were conducted in a Plexiglas cylinder of radius L = 22.8 cm and 

depth H = 26.0 cm, using water with a nominal viscosity of 0.01 cm2 s-’. The mean 
rotation period was fixed at 2.5 s (52, = 2.51 rad s-’). The dimensionless modulation 
frequency y m  was 0.025 (period = 50 s), although a few runs were made with other 
values. For reference these numbers give E = 1.6 x lop4 and Q = 0.097. This puts us in 
the Stokes-Stewartson boundary layer regime in which, for w = 0, the Stewartson 
contribution is relatively small. Visualization was by videography of a Kalliroscopic 
platelet suspension. While this method is somewhat crude for detecting small- 
amplitude disturbances, given the huge disparity between the experiments and linear 
theory, and the mildly model-dependent ‘inertial adjustment’ stability calculation 
presented in 94, it seems sufficient for illustrating the main points of this paper. Two 
video cameras were employed, one looking down on the transparent top lid, and one 
looking in along a radius at mid-height. The whole system was mounted on a rotating 
turntable. A servo loop maintained stability of the basic rotation to better than 0.01 YO, 
and the differential lid rotation was accomplished by sending an analog voltage to a 
voltage-controlled oscillator that, in turn, drives a stepper motor attached to the tank. 
All rotation rates are controlled by a digital computer program in a manner that 
permits easy implementation of relations like (1) and (2). Changes in parameters were 
followed by a waiting period of about 20 forcing cycles. After this delay, a segment of 
videotape was recorded and subsequently scanned for @-dependent waves and vortices 
near r = 1, when looking down from the top. Steps in S were usually around 10 YO. Unit 
jumps in the differential basic rotation parameter w / y  were taken in order to 
qualitatively illustrate the dependence of columnar wavy instability on the size of the 
mean rotation. 

Figure 2(a) shows an instability in the wall layer at a slightly supercritical parameter 
setting. The first observation of waves during a forcing cycle is typically slightly before 
the time of minimum rotation rate of 52, which occurs at t = an + 2jn, j = 0,1,2,3, . . . . 
This usually corresponds to the highest co-rotating (cyclonic) flow just outside the wall 
boundary layer. The direction of the mean rotation rate 52, defines ‘cyclonic’. As the 
rotation Q(t)  hits its minimum, the initial waves in the near-wall region amplify quickly 
and vortices move into the interior (figure 2b). The vortices have a characteristic tilt in 
the prograde direction moving inwards from the wall. By looking up at the bottom 
glass plate while at the same time viewing from the top, or by looking in from the side 
(figure 5a)  it is ascertained that the vortex structures shown in figure 2 are vertically 
coherent. This z-independence is expected because conditions for applicability of the 
Taylor-Proudman theorem are reasonably well satisfied for these mesoscale eddies. 
The timing of the instability is only weakly dependent on W .  For example, when 
W / y  = - 6.0, and 6/y ,  = 4.8, vortices first become obvious at t = 0 . 6 3 ~ ,  reach maximum 
amplitude at t = 0.83x, and then decay away shortly after t = 1 . 1 7 ~ .  

The vortex penetration phase at mildly supercritical conditions is associated with 
somewhat irregular pairings that tend to lower the total wavenumber. Depending on 
the parameters, vortices can migrate deep into the interior and persist for more than 
one cycle, leading to large-scale quasi-geostrophic turbulence with eddy scales that are 
some modest fraction of L. Conditions favouring this are relatively small y, which 
corresponds to long-time-scale forcing, and, of course, relatively large 6. If y is too big, 



1 24 J .  E. Hart and M .  D. Mundt 

FIGURE 2 .  Images from the experiment. The basic rotation is clockwise. the view is from the 
top, and W / Y  
t = 0.9771. 

3.0. (a)  Csly,, 4.5 at t = 0 . 2 1 ~ .  (b) Bly,,, = 5.8 at t = 0 .56~ .  (c> a/y, = 5.8 at 
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even if there is instability the flow reverses before there is time for the vortices to enter 
the interior. If they stay in the boundary layer they dissipate during the maximum 
rotation phase of the forcing cycle. For example, following the time shown in figure 
2(c) the interior eddies at this parameter setting fade out and the cycle repeats. On the 
other hand, for ym = 0.006, with other parameters the same as those in figure 2(c), 
vigorous stirring of the interior by the wall-generated vortices persists over an entire 
cycle. Hart (1 994) provides experimental data and additional qualitative discussion of 
these points. 

Figure 3 summarizes the laboratory data on columnar vortex onset. The solid curve 
with error bar estimates gives the transition data, with the stable region (no vortices) 
being below the curve. Several values of mean differential rotation were used. For 
W = 0 (no mean forcing from the top lid) the instability sets in at 6 % 0.1 for y m  = 0.025 
(6/y,  z 4), and has an azimuthal wavenumber of about 20. The azimuthal 
wavenumber is measured by counting the number of waves circumferentially 
distributed around the tank when they first become obvious in the video imagery. This 
wavenumber is usually slightly higher than the number of penetrating vortices. When 
there is a mean co-rotating component to the differential driving (W > 0), the data in 
figure 3 show that the critical curve for columnar instability dips to lower values, so 
that instability occurs at lower modulation 6 (at fixed y). On the other hand, with mean 
lid rotation opposite to 52, (W < 0) the critical curve is more or less flat, and the 
instability is only slightly suppressed (relative to w = 0) until ~ / y  becomes quite 
negative, where it is enhanced. There are small changes in zonal wavenumber as w 
varies, such that a large mean differential co-rotation seems to be associated with 
slightly longer waves. The most important findings for what follows is the observation 
that positive differential mean-rotation cases are significantly more unstable than those 
with zero or negative (counter-rotating) lid motion, and that the columnar instability 
typically sets in at values of 6 /ym of about four or less. 

Another interesting aspect of the experimental results is that the columnar 
instabilities occur during only one phase of the forcing cycle, irrespective of W, with 
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maximum amplification and vortex penetration occurring for time in the range t = x / 2  
(minimum SZ) to approximately t = %K (maximum a). This is a little surprising, 
particularly for is + 0, because then the profile (1 1) is antisymmetric. It simply changes 
direction, not shape, between successive half-periods of the forcing (i.e. u(r, t t x )  
= -v(r ,  t ) ) .  A quasi-geostrophic model of the instability (e.g. (10) and (1 1)) will not 
have the observed single-phase growth property because instability will be equally 
likely at two phases of the driving displaced by 180". 

A few additional runs at fixed 6 and is, with variable y, were carried out. The 
discussion in 8 1 indicates that this is a four-parameter problem, and these runs were 
undertaken to give an idea of what happens to the columnar instability on a non- 
dimensional ym axis normal to the plane of figure 3. For example, in agreement with 
figure 3, vigorous vortices are generated at S = 0.07, a / y m  = 5,  and y m  = 0.025 
(S/y, = 2.8). However, as y m  changes, with S and is fixed, the vortices disappear for 
y m  5 0.003 and for y m  2 0.07. The vortices generated by the instability appear 
strongest for a value of y m  of about 0.03. Therefore, the critical stability sheet, through 
which the curve in figure 3 passes for y m  = 0.025, is thought to rise for both 
substantially smaller and somewhat larger ym. Following a discussion of what we 
believe to be the essential physics of the instability, we offer a possible explanation of 
this result. 

J .  E. Hart and M .  D .  Mundt 

3. Linear instability theory 
In an effort to interpret figure 3, perturbation equations were derived, in the 

cylindrical geometry, from the quasi-geostrophic model (1 0) by linearizing about the 
azimuthal basic state (11). The resulting equations are separable in 8 so that 
Y = $(r ,  t )  exp (ik8) represents the instabilities for various integer zonal wavenumbers 
k .  The complex partial differential equation for $(r,  t ) ,  in which k is a parameter, is 
solved numerically on a stretched grid using N points in radius and a stretching 
function that concentrates points exponentially in the sidewall boundary layer near 
r = 1 .  Suppose the normal radial coordinate is given by 

j -  1 r' = ~ 

N-1' 

where j = 1,2,3, ... , N. Then the stretched coordinate is given by 

1 - e-ar' 

1 -e-" 
y = -. 

Typical values are N = 200, a = 4. In the figures shown below there are no discernible 
differences in going up to N = 520. Tests with a: = 0 and 2 indicate that stretching is 
helpful, but higher values than a: = 4 are not required. The problem is posed as an 
initial value calculation in which a random perturbation to $ is initiated at t = 0. No- 
slip is enforced at r = 1, and a regularity condition is imposed at  the origin. The 
coupled equations for vorticity and streamfunction were time-marched implicitly using 
a Crank-Nicholson method. The solutions were then obtained via sparse matrix 
inversion at each time step. The time step is chosen so that sufficient numerical 
accuracy is obtained. This presents problems at large k (2 50) and large 6, because then 
the azimuthal advection of waves is large during parts of the cycle and very small time 
steps are required. At large time the total kinetic energy of a particular k-mode is 
monitored over several forcing cycles. If the net energy increases between start and 
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FIGURE 4. Results of the linear instability calculation for the laminar Stokes-Stewartson layer with 
E = 1.6 x Q = 0 . 1 , ~ ~  = 0.025, w = 0. Natural log of disturbance kinetic energy us. time for (a) 
k = 10, (b) k = 20, and (c)  k = 30 for the values of the forcing shown. The time origin corresponds 
to about 2 boundary layer diffusion times. 

finish of each driving oscillation, then the disturbance is said to undergo 'total 
instability'. If it rises during any part of the cycle, but finishes lower than it started, the 
disturbance is said to be 'transiently unstable'. 

Figure 4 shows results for a = 0. Instability appears possible for large enough 
forcing. As anticipated there are two periods of growth for each 27c-long forcing cycle. 
The transition is quite sudden in the sense that energy amplification factors of order 
el0 over a cycle are possible for supercriticality of order one. The Sly, separation 
between the total instability traces seen in figure 4 and regions of transient instability 
is small. It was difficult to find a sizeable range of parameters for which significant 
transient instability (as defined above) occurs at large times. An initial energy hump or 
two, due to unbalanced initial conditions, can be seen early in a numerical integration. 
However, the parameter-space boundary between monotonic energy decay and net 
energy growth is very sharp at large times. For example, in the k = 20 case, the motion 
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goes from stable at Sly, = 37 to transient unstable at S/y, = 38, but is already totally 
unstable at 6/y,  = 39 (with unit steps in parameters). Furthermore, the energy growth 
per cycle in the transient region is only of order 1. The most important point is that 
the predicted instability threshold is far larger than the observed values. The theory is 
about an order of magnitude higher, with a critical value of Sly ,  of about 39, 
compared with 4.2 in the laboratory. It is for this substantial discrepancy that we seek 
a plausible explanation. 

Before moving on to our modified theory, two other aspects of this instability 
problem are of interest. First, von Kerczek & Davis (1974) present linear stability 
calculations which show that a pure planar Stokes layer (Q = 0, L+ a) of thickness 
6, = (2v/y)l’’ is linearly stable for Reynolds number 

(15) 

where the 800 figure represents the largest value for which numerical solutions were 
obtained. They speculate that the Stokes layer may be stable for all Re’s. The transition 
points in figure 4 correspond to a Stokes Reynolds number of about 3500, suggesting 
that instability may be possible at high enough Reynolds number with finite L. As Q 
is made smaller in our calculations, the critical Sly, does not change very much. At 
our laboratory value of Q = 0.097 M 0.1 the profiles for W = 0 are not strongly 
influenced by vortex stretching and are close to pure Stokes flow. Upon increasing Q, 
our calculations show that the motion becomes more stable (i.e. the critical 6 increases). 
This is expected because at large Q the modulated Stewartson layer has no inflection 
points at all since b-0 in (13). The second important point about these linear 
calculations is that because 6 is so large for instability this model is almost totally 
insensitive to mean lid rotations w in the range studied experimentally. 

The traditional quasi-geostrophic approximation is not valid for the large values of 
S required for instability in figure 4 if modulation of the entire tank (1) is used to force 
the motion. One could attempt to fix this up by keeping the 6, sin ( t )  term in (7) while 
still looking at two-dimensional disturbances, but we do not believe this is the source 
of the problem. Conceptually, the theoretical calculations can be related to an 
experiment with large periodic lid forcing 6, and zero tank-rotation-rate modulation, 
but then one would have to worry about the validity of the Ekman suction model used 
to derive (10). In comparing with experiments, we note that linear stability theory using 
the laminar Stokes-Stewartson basic-state profile fails to predict the observed 
columnar instability, which in the laboratory occurs in a region of parameter space that 
has a small value of 6, consistent with the assumptions made in the derivation of the 
governing equation. 

Re’s = US,/v = 6/((2E)l”y,) < 800, 

4. Inertial adjustment 
The columnar quasi-geostrophic model is invalid in regions where either the 

requirement of depth-independent motion breaks down, or the assumption that 
relative vorticity is much smaller than the mean planetary vorticity 24, fails. The 
strongest shears are in the vicinity of the sidewall boundary layer. For 6 of order 0.1 
the local Rossby number for the sidewall layer can be order one. A first possibility is 
that z-invariant ageostrophic advections due to non-geostrophic interior flow driven by 
the Ekman suction, as well as additional stretching of total vorticity, cause changes in 
the structure of the Stokes-Stewartson layer, making it more unstable. This reflects a 
failure of quasi-geostrophy, while retaining depth-invariance. However, the Ekman- 
fed ageostrophic flow is of order Q times the local Rossby number, and since this is still 
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fairly small in most of our experiments it seems unlikely that this mechanism is 
responsible for the dramatic destabilization (relative to the linear theory of § 3) 
observed in the laboratory flow. It may however modify the instability characteristics, 
once the instability is established by a different mechanism. 

A second possibility is that the motion has two components. There are vortex 
columns associated with the instabilities as illustrated in figure 2, and there are, in 
addition, motions with small vertical scale that arise from an ageostrophic depth- 
dependent instability that is not described by the z-invariant model (10). In this regard 
we point out that for the system with basic rotation SZ, there is no Squires’ theorem, 
and two-dimensional columnar modes will not, of necessity, be the most unstable. This 
situation may be compared with the non-rotating Stokes layer problem (von Kerczek 
& Davis 1974) that does satisfy such a theorem, guaranteeing dominance of two- 
dimensional modes in the unstable eigenvalue spectrum. 

Figure 5(a)  shows a photograph looking through the sidewall. In addition to the 
columnar disturbances (bright vertical bands) at the left and right sides of the image, 
there also are streamwise ‘ longitudinal roll’ motions, which appear bent or modulated 
by the vortex columns. These latter modes are always observed to be present prior to 
the columnar instability. The longitudinal rolls typically form in the sidewall layer 
somewhat before the minimum of the basic rotation. Near or just after the minimum 
in the forcing, the ‘inner’ part of the sidewall layer adjacent to the wall can become 
turbulent (figures 5b and 5c). A close examination of figure 2(b) also reveals a narrow 
band of turbulent fluid near r = 1 between the columnar vortices and the boundary. 

When 7 and h are small, the curvature of the boundary is dynamically insignificant. 
The roll instabilities observed here are similar to the so-called ‘inertial instabilities ’ that 
occur in a horizontally sheared flow in a rotating channel (Hart 1971). These arise 
through an interplay of Coriolis forces associated with a basic rotation Q,,, and 
advection of the zonal flow by roll velocities normal to the wall. There is a close 
analogy between these instabilities and thermal convection rolls, where the dimensional 
quantity r = 2Q, + a-o//ar plays the role of the thermal stratification. For example, a 
necessary condition for roll instability is that r, like the vertical thermal gradient in 
convection, must be negative inside the domain. The condition that r < 0 for roll 
instability is also related to Rayleigh’s absolute angular momentum gradient criterion 
for the instability of inviscid curved flows. At the experimental parameters for which 
columnar instability is observed, T can be strongly negative. For example, taking the 
limit of small (3, and using (13) and (14) to described the basic flow, it is 
straightforward to find the critical value of the forcing needed to satisfy the non- 
dimensional version of this necessary criterion for instability. With our scaling the 
r < 0 constraint becomes 

a-o -1 G < - Y m  

for some value of r in the domain. This condition is first satisfied at r = 1 and at t = fz. 
The critical forcing level needed is then given by 

( $ ) c  = 2E1/2/ym-iSQ1i2/y. 

Inserting the values of our fixed experimental parameters yields 

( $ ) c  = 1.02-0.3la/y. 
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FIGURE 5. (a) Photograph looking in through the sidewall showing a region about 15 cm across at 
mid-depth, with 6 / y  = -6.0, S/y,,, = 4.8 and t = 0 . 8 0 ~ .  (h) Sly,  = 6 ,  w/y = 1.5, t = 0 . 1 8 ~ .  (c) same 
as (b) but t = 0 . 5 2 ~ .  The counter measures 2rc units of time over the range 0 to 1, with 0 and 1 being 
times of minima of Q(t ) .  
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Comparison with figure 3 illustrates that when the columnar instabilities occur, the 
system is strongly supercritical with respect to the inertial instability condition (except 
perhaps at large negative values of the mean forcing). The characteristic value of the 
boundary layer Reynolds number is several hundred, and, as mentioned above, the 
rolling motions may be turbulent during a substantial fraction of the forcing cycle 
(figure 5 b, c). If one assumes a connection between the roll-dominated wall-layer 
turbulence and the columnar instability, (18) provides a rationalization for the 
observed lowering of the modulation S needed for vertical vortex generation with 
positive differential forcing a, relative to that for zero or slightly negative O, as shown 
in figure 3 .  

Just as turbulent thermal convection homogenizes the interior temperature in a 
differentially heated layer, we expect that inertial instability turbulence will nullify I-. 
Such an effect has been observed in laboratory experiments and computational 
simulations of turbulent Poiseuille flow down rotating channels with basic rotation 
(e.g. Johnston, Halleen & Lezius 1972; Tafti & Vanka 1991). We propose an ‘inertial 
adjustment ’ of the basic profiles (1 l), similar in principle to certain ‘convective 
adjustment’ schemes that are used to parameterize the effects of convective turbulence 
on large-scale variables in numerical models of atmospheric circulations. We assume 
that when Tis  predicted to be less than zero, or (1 1) satisfies (16), roll turbulence forms 
spontaneously over the range of r for which this is true and instantaneously reduces the 
zonal shear to the neutrally stable value. This process typically occurs in a region 
extending some distance in from the wall, and happens during the single phase of the 
driving cycle for which the shear is negative at r = 0. While this hypothesis sets the 
slope of the zonal velocity profile within the unstable region, it is also necessary to 
specify the mean velocity. Since there necessarily will be a zonal momentum flux into 
the wall, we anticipate a thin diffusive boundary layer between the adjusted region and 
r = 1 that carries the flux and exerts a stress on the wall. If the turbulence mixes zonal 
momentum efficiently, the mean velocity in the adjusted region should be about half 
the value of the interior flow minus that at the wall (zero). Then a second diffusive layer 
will appear near the boundary between the adjusted region and the interior motion. To 
keep the model as simple as possible we assume that this second viscous layer is similar 
in structure to the wall layer. This is consistent with qualitative visual observations of 
the experiments. During the roll-turbulence phase these show a radial slab of turbulent 
fluid sandwiched between the interior and the wall, and this slab seems to rotate at a 
rate that is less than the interior swirl, with an apparent jump in velocity between the 
turbulent and interior regions. 

The formal adjustment procedure is carried out as follows. We first find the time at 
which an inertially unstable region exists. Denoting the minimum radius at which 
r<  0 as r,(t), we amend the velocity profile in the region r, < r < 1 by writing 

In (19), c is the absolute value of the inertially neutral slope ym-l, b = v(rC, t ) ,  
d = [b + c(r, + 1)]/2, and K-’ is the e-folding thickness of the thin diffusive layers on 
each side of the adjusted region. These narrow shear layers match velocities in the 
interior and bring them to zero at the wall. In order to ensure that u(r, t )  has continuous 
derivatives at r = r,  we apply a smoother in the region T , - F  < r d rc+e,  F < 1. The 
smoother typically influences 3 to 5 points on the stretched grid in the boundary layer. 

We adjust the profile using (19) until the inertially unstable region achieves its 
maximum extent into the interior, which occurs at time t ,  (not related to r,). At this 
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FIGURE 6. Original laminar (solid) and inertially adjusted (dashed) basic-state velocity profiles for 
E = 1.6 x Q = 0.1, 6/y, = 8, o = 0 for the times shown. The minimum basic-state rotation is 
at t = in, while the maximum is at t = $ 7 ~ .  The profiles are plotted on a stretched grid to bring out 
detail in the boundary layer region. 
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time we start to relax the basic flow back to the exact laminar solution. If we denote 
the difference between the adjusted and unadjusted profiles at tc as Avt,, the total 
velocity for t > t ,  is given by 

v(r, t )  = vqg(r, t )  + Av, (20) 

where vqg is the original profile (i.e. (1 l)), and Av(r, t - t,) is found by solving 

-- - xV2Av 
at 

with Av = Avt, initially, and Av = 0 at r = 0, l .  The relaxation constant x is chosen so 
that Av 2: 0 by the time the cycle forcing repeats itself and inertial instability occurs 
again. Figure 6 shows the normal laminar and adjusted profiles for typical laboratory 
settings with K = 1000 and x = 0.0002. For the supercritical situation shown, the 
adjustment region is widest at t = in, since this is the time at which inertial instability 
first occurs. The plot shows that the flow relaxes back to the Stokes-Stewartson profile 
at about the time of maximum basic rotation ( t  = in). 

The effects of the adjustment parameters K ,  E and x on the columnar-mode stability 
problem, based on the modified basic-state profiles such as those in figure 6, were tested 
empirically. The results for K = 250, 500, 1000 and 2000 were very similar for all but 
the smallest value of K.  In this latter case the diffusive layers penetrate substantially into 
the turbulent region. Reasonable changes in the size of the smoothing width ( E )  had no 
qualitative effect on the results. The parameter x is constrained by the observation of 
the absence of wall turbulence during about half of the cycle. However, the instability 
is largely insensitive to x because the growth occurs during the times t < t,, when 
inertial adjustment, not relaxation, is happening. Admittedly, the inertial adjustment 
process is a rough approximation to the complex laboratory motions, to be tried in the 
face of the extremely difficult problem of simulating the entire multi-scale three- 
dimensional flow numerically. On the other hand, it is, as described below, rather 
successful in reducing the dramatic factor-of-ten disagreement between experiment and 
laminar-profile stability theory to essentially nil. 

5. Stability results using adjusted profiles 
The linearized form of (10) is again solved numerically as an initial value problem, 

but now using adjusted u(r, t )  profiles for the basic state. We fix SZ, = 2.5 rad s-l, 
E = 1.6 x lop4, y m  = 0.025, Q = 0.1, a = 4, K = 1000, number of gridpoints = 200, 
number of time steps = 2000 per cycle (typically), E = 0.003 (smoothing over 5 points on 
the stretched grid), x = 2 x and vary k, S and W. Figure 7 demonstrates that the 
adjusted profiles are significantly more unstable than the purely laminar basic states. 
Note that significant amplification occurs from phase angle t x fn to t x n during each 
forcing cycle. Recall that the laboratory observations show precisely this same 
behaviour, with eddies forming and erupting from the boundary layer just after the 
deepest penetration of the small-scale sidewall turbulence. As expected, there is now 
only one growth phase per cycle (as opposed to two for the laminar profiles), because 
inertial instability only occurs when the sidewall vorticity is opposite to the basic 
rotation. The instability calculations predict a band of unstable waves from a lower 
cutoff of k x 10 to k = 50, with the latter value being the highest k tested. There is a 
shallow peak in amplification for waves with k x 30. Potentially significant transient 
instability is also found for a small range S/y, just below those values required for 
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FIGURE 7. Evolution of the natural log of the kinetic energy of linear modes superimposed on the 
inertially adjusted basic-state profiles, with the azimuthal wavenumber shown. E = 1.6 x 
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total instability (see figure 7c). The fact that the experiments have vortex counts 
corresponding to lower k, between 15 and 20, may arise by spatial subharmonic 
generation or by nonlinear selection of lower wavenumbers in the instability band. The 
columnar instability model has a basic state that has been adjusted to account for the 
presence of turbulence, but the lateral viscous damping of the wavy disturbances in the 
calculation is still accomplished by simple Newtonian friction. The direct effect of 
residual turbulence on the high wavenumbers in the linear mode spectrum is unknown, 
but it is possible that enhanced damping of such waves could occur. 

Figure 8 shows adjusted profiles for a case having a mean differential rotation with 
a / y  = 4.5. As noted above, the presence of a co-rotating differential driving increases 
the anticyclonic shear at the wall so that the radial width of the adjusted region is 
larger. Alternatively, for o > 0 the inertial instability sets in earlier in time and remains 
on longer as 6/y,  is increased. For this situation, not surprisingly, the columnar 
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FIGURE 8. Original laminar (solid) and inertially adjusted (dashed) basic-state velocity profiles for 
E = 1.6 x Q = 0.1, 6/y, = 8, 6 / y  = 4.50, for times as shown. 
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instabilities grow more readily. A comparison of figures 9 and 7 for k = 20 at the same 
values of 6/y, shows the much higher growth rates for instability with positive 6. 

Combining data from a large number of computational runs for the typically 
observed value of k = 20 yields the theoretical critical curve shown in figure 10. This 
illustrates again that the columnar instability is stronger for positive mean differential 
forcing. For w/y between - 1 and 5 there is very good agreement with the experimental 
data in figure 3. The theoretical critical value for 6 / y  = 0 is 6/y ,  = 4.6, while for 
w / y  = 3 onset occurs at 6/y, z 2.7. The corresponding experimental values are 4.2 
and 2.8 respectively. Although it is possible to improve or worsen the agreement by a 
few percent by altering the adjustment model's parameters, we have found the stability 
curve to be quite robust with respect to changes in K, E and 2.  The important point is 
that the inertially adjusted instability calculation captures the main features of the 
experiments over a substantial range of W. On the other hand, as shown in $3, the 
instability theory based on the exact laminar profile does not come close at all. 



Oscillatory Stokes-Stewartson layers in a rotating fluid 

S F '  ' < '  " I '  ' ' I  ' " I " " ' '  ' 1  
6 -  

c;o 4 -  
Ym 

2 -  

137 

L 

~ 

-6 -4 -2 0 2 4 6 

Oly 

FIGURE 10. Theoretical critical curve for total instability of k = 20 waves based on inertially 
adjusted profiles. E = 1.6 x Q = 0.1, y, = 0.025. 

For negative mean rotation there are increasingly significant differences between 
theory and experiment as the counter-rotational lid forcing becomes stronger. The 
model critical curve becomes too high for B / y  <, -2. As a possible explanation, we 
note that the inertial adjustment is triggered when the necessary condition for inertial 
roll instability is satisfied. This trigger is based on linear quasi-geostrophic dynamics 
(i.e. (1 1) and (17)). However, the time-averaged Stewartson layer part of the motion 
driven by the mean differential rotation of the upper lid (the first terms in (1 1)) is 
accompanied by a transverse circulation associated with vertical fluxes out of the 
Ekman layers at the top and bottom of the sidewall layer. The effects of these 
ageostrophic meridional motions, other than simple stretching of mean vorticity 252,, 
are not included in the basic model (10). If ij < 0, the mean sidewall boundary flow is 
cyclonic, and the transverse circulation is radially outward in the layer so it will push 
the entire Stokes-Stewartson structure up against the sidewall. 

Hart (1995) analyses this problem for a steadily forced Stewartson layer, 
incorporating nonlinear Ekman suction effects and stretching of total vorticity as well 
as ageostrophic advection. This analysis shows that the degree of sidewall boundary 
layer compression can be substantial if the local Rossby number across the layer, 
wL/252,LS, where L, is the Stewartson layer width, becomes of order one. At 
W/y = - 6 this parameter is about 0.9 in the experiments. The net result is to increase 
the shear av/ar at the wall. During the phase of the forcing cycle when this is negative, 
the likelihood of roll turbulence will thus be enhanced, leading to more columnar 
instability in the experiment than in the model. The experimental stability curve should 
thus decrease, with respect to what happens without these higher-order Rossby number 
effects (i.e. figure 10) as 6 / y  become increasingly negative, as observed. 

The above explanation should work the other way around for positive W, because 
anticyclonic sidewall layers are widened by ageostrophic effects (Hart 1995). If one 
considers k = 30, or transient instead of total instability, the critical curve in figure 10 
is lowered by about 10 YO for each change. Thus one might say that the experiment is 
becoming quantitatively less unstable than the model at large positive values of O/y .  
However, there is clearly an asymmetry in the experimental critical point data in figure 
3. We observe strong destabilization at large negative w and only relatively weak 
stabilization at large positive values of B associated with the slight upturn of the 
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FIGURE 1 1. Disturbance streamfunctions computed numerically from the linear stability problem for 
the k = 20 mode with S/y, = 8, w = 0. Contours are scaled logarithmically and are normalized by 
setting the maximum contour equal to 1 based at the time of maximum amplitude, which occurs 
at t z :K. The radial coordinate is not stretched. 

transition curve for w/y between 4 and 6. This might be related to Ro2 corrections in 
the boundary layers (in addition to the Ro corrections speculated in the previous 
paragraph). We prefer the explanation that the asymmetry is due to the nature of the 
lid-driving setup itself. There is a near-singular vertical vorticity region in the small 
1 mm gap where the differentially rotating disc meets the sidewall. When the lid is co- 
rotating (W > 0) the Ekman layer flow just beneath the top lid is outwards, and the 
large negative vorticity in the top corner can be advected down into the sidewall 
boundary layer by this Ekman flux. Roll instabilities in the sidewall boundary layer 
under conditions of steady differential lid forcing have been observed in the laboratory 
to be much enhanced by this effect (Hart & Kittelman 1995). However, for counter- 
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rotation of the top lid the Ekman radial flow is up the sidewall and then radially 
inwards in the Ekman layer, and the near-singular vorticity is restricted to the gap. This 
gap effect may counter the expected stabilization by ageostrophic circulations for 
positive is. 

With 6, is, and fz, fixed, the columnar instability observed in the laboratory cuts off 
at both large and small ym, relative to that required for maximum vortex generation 
(x 0.03). As the modulation frequency decreases (small ym),  the Stokes layer widens 
and eventually the trigger for inertial adjustment is not activated. It can be shown that 
the observed loss of columnar modes at the low-frequency limit cited at the end of $2 
corresponds to a situation where the flow is nearly marginal with respect to the trigger 
condition (17). At the high-frequency end, although the necessary condition for inertial 
instability is satisfied for a sizeable fraction of the modulation cycle, the cycle is so 
short that roll instability and turbulence do not have time to develop and are less 
effective at modifying the laminar profile. 

Lastly, the spatial structures from the adjusted linear problem are quite suggestive 
of the observed columnar eddies. Figure 11 illustrates the nature of the instability in 
space and time by showing the evolution of the perturbation streamfunction for a 
specific k over a cycle of the forcing. The waves amplify in the shear layer right next 
to the wall starting at about t = in, As they grow they propagate away from the 
boundary. For the situation shown, there is a net amplification between t = 0 and 
t = 2x. The penetration of the waves into the interior is similar to what is observed in 
the experiments, although the amplification is generally large enough that the 
experiments are strongly influenced by columnar nonlinear effects once the eddies have 
escaped the near-wall turbulent region. 

6. Conclusions 
Laboratory observations of periodically forced flow in a rapidly rotating cylinder, 

which is also subject to driving by mean differential rotation of the upper lid, show 
columnar vortex generation by instability in the sidewall boundary layer. The vortices 
are invariant with distance along the axis of rotation, in concert with the 
Taylor-Proudman constraint. An exact axisymmetric solution of the depth-invariant 
quasi-geostrophic vorticity equation is obtained. This basic-state flow takes the form 
of periodic solid rotation of the interior coupled to the wall via a Stokes oscillatory 
boundary layer that is modified by vortex stretching induced by Ekman suction. Thus, 
this solution is called a Stokes-Stewartson layer. Linear instability calculations for 
non-axisymmetric perturbations show that this profile is very stable, with a critical 
point a factor of 10 larger than what is required for wavy vortices in the experiments. 

This discrepancy is addressed by taking account of the effects of small-scale Taylor- 
vortex-like ‘inertial instability’ near the wall. We use an inertial adjustment scheme in 
which the fine-structure turbulence is proposed to render the mean profile neutral to 
inertial instability, when conditions favour such, followed (in time) by a viscous 
relaxation back to the exact solution during the inertially stable phase of the driving 
cycle. The columnar mode stability problem is then recalculated using these modified 
profiles. The inertially adjusted flows are found to be much more unstable, with critical 
parameters that are in good agreement with those found experimentally, The 
exceptions that occur when the periodic modulation of the basic rotation is 
supplemented by a large time-mean forcing at the upper lid are thought to be due to 
ageostrophic advections in the sidewall boundary layer that are not a part of our 
model. 
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To further explore the idea that small-scale roll instability and turbulence can alter 
the mean state and lead to large-scale coherent structure generation, direct 
measurements of the vertically averaged azimuthal flow U(r, r ) ,  or possibly comp- 
utational simulation of it, are suggested. Probing the 4 mm thick sidewall Stokes layer 
with sufficient precision and resolution is a difficult task, but two-dimensional 
stretched-grid computational simulations in r and z may provide insights into the 
formation of profiles like those shown in figures 6 and 8. The present results illustrate 
the danger of using eddy viscosity concepts to generate zonal flows that are 
subsequently tested for instability (or may be expected to be unstable). Here, small- 
scale turbulence within the sidewall boundary layer acts in a very different way than 
viscosity in shaping the azimuthal basic flow, and renders this zonal flow highly 
unstable to columnar vortical disturbances. 
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this research by the National Science Foundation through grant OCE-92-02995 to the 
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